Experimental micromechanics of the cement-bone interface.

نویسندگان

  • Kenneth A Mann
  • Mark A Miller
  • Richard J Cleary
  • Dennis Janssen
  • Nico Verdonschot
چکیده

Despite the widespread use of cement as a means of fixation of implants to bone, surprisingly little is known about the micromechanical behavior in terms of the local interfacial motion. In this work, we utilized digital image correlation techniques to quantify the micromechanics of the cement-bone interface of laboratory-prepared cemented total hip replacements subjected to nondestructive, quasistatic tensile and compressive loading. Upon loading, the majority of the displacement response localized at the contact interface region between cement and bone. The contact interface was more compliant (p = 0.0001) in tension (0.0067 +/- 0.0039 mm/MPa) than compression (0.0051 +/- 0.0031 mm/MPa), and substantial hysteresis occurred due to sliding contact between cement and bone. The tensile strength of the cement-bone interface was inversely proportional to the compliance of the interface and proportional to the cement/bone contact area. When loaded beyond the ultimate strength, the strain localization process continued at the contact interface between cement and bone with microcracking (damage) to both. More overall damage occurred to the cement than to the bone. The opening and closing at the contact interface from loading could serve as a conduit for submicron size particles. In addition, the cement mantle is not mechanically supported by surrounding bone as optimally as is commonly assumed. Both effects may influence the longevity of the reconstruction and could be considered in preclinical tests.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of Cement Augmentation at Different Scales: A Combined Experimental and Finite Element Study

Whilst specimen-specific finite element (FE) models of bone have shown good agreement with experimental results, the representation of cement-augmented bone for orthopaedic applications remains a challenge. In previous studies, the bone-cement interface has been represented in simplified forms using continuum level models, but this has been shown to lead to large overestimations in the predicte...

متن کامل

Functional interface micromechanics of 11 en-bloc retrieved cemented femoral hip replacements

BACKGROUND AND PURPOSE Despite the longstanding use of micromotion as a measure of implant stability, direct measurement of the micromechanics of implant/bone interfaces from en bloc human retrievals has not been performed. The purpose of this study was to determine the stem-cement and cement-bone micromechanics of functionally loaded, en-bloc retrieved, cemented femoral hip components. METHO...

متن کامل

Interface micromechanics of transverse sections from retrieved cemented hip reconstructions: an experimental and finite element comparison

In finite element analysis (FEA) models of cemented hip reconstructions, it is crucial to include the cement-bone interface mechanics. Recently, a micromechanical cohesive model was generated which reproduces the behavior of the cement-bone interface. The goal was to investigate whether this cohesive model was directly applicable on a macro level. From transverse sections of retrieved cemented ...

متن کامل

Micromechanics of postmortem-retrieved cement-bone interfaces.

The cement-bone interface plays an important role in load transfer between cemented implant systems and adjacent bone, but little is known about the micromechanical behavior of this interface following in vivo service. Small samples of postmortem-retrieved cement-bone specimens from cemented total hip replacements were prepared and mechanically loaded to determine the response to tensile and co...

متن کامل

Biomechanical effects of morphological variations of the cortical wall at the bone-cement interface

BACKGROUND The integrity of bone-cement interface is very important for the stabilization and long-term sustain of cemented prosthesis. Variations in the bone-cement interface morphology may affect the mechanical response of the shape-closed interlock. METHODS Self-developed new reamer was used to process fresh pig reamed femoral canal, creating cortical grooves in the canal wall of experimen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of orthopaedic research : official publication of the Orthopaedic Research Society

دوره 26 6  شماره 

صفحات  -

تاریخ انتشار 2008